290 research outputs found

    Estudio comparativo de la utilización de las tecnologías de gasificación Downdraft y lecho fluidizado burbujeante para la generación de energía eléctrica en aplicaciones de baja potencia

    Full text link
    En este trabajo de tesis doctoral, se realiza un estudio comparativo teórico y experimental entre dos tipos de tecnologías de gasificación de biomasa, determinando su viabilidad técnica, económica y ambiental para la producción de energía eléctrica en aplicaciones de baja potencia (inferiores a 100 kW). Los tipos de tecnologías seleccionadas están entre los de mayor interés en el campo de la gasificación de biomasa: lecho fijo downdraft y lecho fluido burbujeante. La mayoría de los resultados presentados en este trabajo, comparando las dos tecnologías, fueron obtenidos de manera experimental. Aunque más costosos, los experimentos proporcionan datos de diseño más fiables que los que se pueden obtener a través de la modelización o simulación, esto sin tener en cuenta que las reacciones que se llevan a cabo en el reactor son complejas y difíciles de modelar, sobretodo en la fase de conversión de sólido a gas, además, la mayoría de los modelos se enfocan en la producción y composición del gas sin tener en cuenta tanto la generación de alquitranes y residuos sólidos como su separación del gas, tan esenciales como el propio proceso de generación del gas. Todos estos hechos han obligado a centrar el estudio comparativo en la verificación experimental del comportamiento de ambos tipos de gasificadores, para lo cual se diseñó, construyó y puso en operación un prototipo con una potencia eléctrica del orden de 10 kW para cada una de las dos configuraciones a estudiar. También se aborda en el presente trabajo el problema de limpieza del gas y la separación de los residuos, especialmente alquitranes, generados en el proceso de gasificación. Para cada uno de los dos tipos de tecnologías estudiadas se ha definido y probado un tipo de sistema de limpieza de gases diferente, utilizando en ambos casos lavadores húmedos de gases y filtrado por medio de astillas, aunque con modos de operación diferentes. El estudio experimental permitió determinar la configuración óptima con la cual se obtiene un gas adecuado para ser quemado en un motor de combustión interna, éste es uno de los problemas más importantes a considerar en una planta de gasificación, debido al coste y el consumo de energía adicional que conllevan estos sistemas. En el aspecto de viabilidad económica se determinó, a partir de los gastos de construcción de los prototipos, que las plantas de generación de energía mediante la gasificación de biomasa con potencias inferiores a 50 kW no son económicamente rentables en España, salvo en condiciones muy restrictivas de bajo coste de la biomasa (inferior a 0,03 ¿/kg) y/o elevada subvención que permitiese un precio de venta superior a 0,2 ¿/kWh. Descartando la conexión a red de una planta de gasificación de baja potencia, se consideró su utilización en zonas no interconectadas, comparando los costes de generación de energía en dicha planta con los de las plantas que operan con gas natural o gasoil, se ha determinado que es más rentable la planta de gasificación, por lo tanto sería una alternativa para la generación de energía eléctrica en zonas rurales donde es costoso llevarla utilizando los métodos convencionales.Vargas Salgado, CA. (2012). Estudio comparativo de la utilización de las tecnologías de gasificación Downdraft y lecho fluidizado burbujeante para la generación de energía eléctrica en aplicaciones de baja potencia [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16379Palanci

    Impact of the throat sizing on the operating parameters in an experimental fixed bed gasifier: Analysis, evaluation and testing

    Full text link
    The aim of this research is to contribute into the diffusion of biomass power systems by analyzing and testing the throat sizing influence on the operation of a gasification plant coupled with an internal combustion engine. In order to do this, the assessment of the proper operation range for some of the driving process parameters has been carried out. The analysis has been focused on such parameters as pressure drop of the fixed bed reactor, the inlet air flow, the syngas production, electrical power production and efficiency, looking for improving the performance and guaranteeing the proper system operation. Two different campaigns of tests have been carried out for figuring out the best design on the reactor. Based on this analysis, the most convenient throat diameter has been determined (in this case, around 10 cm), producing an increment in the production of syngas of about 31%. This modification has demonstrated also an increment of the electrical power produced by the gasification plant of about 40%, which means an increment in the motor generator efficiency of 35%.Montuori, L.; Vargas Salgado, CA.; Alcázar-Ortega, M. (2015). Impact of the throat sizing on the operating parameters in an experimental fixed bed gasifier: Analysis, evaluation and testing. Renewable Energy. 83:615-625. doi:10.1016/j.renene.2015.04.068S6156258

    Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings

    Full text link
    [EN] Applications of renewable electricity in cities are mostly limited to photovoltaics, and they need other renewable sources, batteries, and the grid to guarantee reliability. This paper proposes a hybrid system, combining biomass and photovoltaics, to supply electricity to educational buildings. This system is reliable and provides at least 50% of electricity based on renewable sources. Buildings with small (70%) implies high electricity costs.This work was supported in part by the European Commission through project "Holistic And Scalable Solution For Research, Innovation And Education In Energy Tran project" (Agreement number: 837854). This work was supported in part by the European Commission through GROW GREEN project (Agreement number: 730283 - GROW GREEN-H2020-SCC-2016-2017/H2020-SCC-NBS-2stage-2016. http://growgreenproject.eu/). This work was completed in the framework of the activities of the Renewable Area research group of the IUIIE (Instituto Universitario de Investigación en Ingeniería Energética) in regional, national, and international projects. The authors deeply thank the Universitat Politècnica de València, IMPIVA-Generalitat Valenciana, the Spanish Ministry of Science and Technology, and the European Commission for the funded projects coming from this organization.Alfonso-Solar, D.; Vargas-Salgado Carlos; Sánchez-Diaz, C.; Hurtado-Perez, E. (2020). Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings. Sustainability. 12(21):1-14. https://doi.org/10.3390/su12219300S1141221Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.030Prasad, M., & Munch, S. (2012). State-level renewable electricity policies and reductions in carbon emissions. Energy Policy, 45, 237-242. doi:10.1016/j.enpol.2012.02.024Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38-50. doi:10.1016/j.esr.2019.01.006Bracco, S. (2020). A Study for the Optimal Exploitation of Solar, Wind and Hydro Resources and Electrical Storage Systems in the Bormida Valley in the North of Italy. Energies, 13(20), 5291. doi:10.3390/en13205291Directorate-General for Energy, EU Commission. Clean Energy for All Europeanshttps://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_enURLÓhAiseadha, C., Quinn, G., Connolly, R., Connolly, M., & Soon, W. (2020). Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018. Energies, 13(18), 4839. doi:10.3390/en13184839Hart, E. K., & Jacobson, M. Z. (2011). A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables. Renewable Energy, 36(8), 2278-2286. doi:10.1016/j.renene.2011.01.015Acevedo-Arenas, C. Y., Correcher, A., Sánchez-Díaz, C., Ariza, E., Alfonso-Solar, D., Vargas-Salgado, C., & Petit-Suárez, J. F. (2019). MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response. Energy Conversion and Management, 186, 241-257. doi:10.1016/j.enconman.2019.02.044Bajpai, P., & Dash, V. (2012). Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renewable and Sustainable Energy Reviews, 16(5), 2926-2939. doi:10.1016/j.rser.2012.02.009Bernal-Agustín, J. L., & Dufo-López, R. (2009). Simulation and optimization of stand-alone hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 13(8), 2111-2118. doi:10.1016/j.rser.2009.01.010Karakoulidis, K., Mavridis, K., Bandekas, D. V., Adoniadis, P., Potolias, C., & Vordos, N. (2011). Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system. Renewable Energy, 36(8), 2238-2244. doi:10.1016/j.renene.2010.12.003Kusakana, K. (2015). Optimal scheduled power flow for distributed photovoltaic/wind/diesel generators with battery storage system. IET Renewable Power Generation, 9(8), 916-924. doi:10.1049/iet-rpg.2015.0027Koutroulis, E., Kolokotsa, D., Potirakis, A., & Kalaitzakis, K. (2006). Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Solar Energy, 80(9), 1072-1088. doi:10.1016/j.solener.2005.11.002Ipsakis, D., Voutetakis, S., Seferlis, P., Stergiopoulos, F., & Elmasides, C. (2009). Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage. International Journal of Hydrogen Energy, 34(16), 7081-7095. doi:10.1016/j.ijhydene.2008.06.051Mata, É., Sasic Kalagasidis, A., & Johnsson, F. (2014). Building-stock aggregation through archetype buildings: France, Germany, Spain and the UK. Building and Environment, 81, 270-282. doi:10.1016/j.buildenv.2014.06.013HOMER Energyhttps://www.homerenergy.com/Oladigbolu, J. O., Ramli, M. A. M., & Al-Turki, Y. A. (2020). Optimal Design of a Hybrid PV Solar/Micro-Hydro/Diesel/Battery Energy System for a Remote Rural Village under Tropical Climate Conditions. Electronics, 9(9), 1491. doi:10.3390/electronics9091491Hurtado, E., Peñalvo-López, E., Pérez-Navarro, Á., Vargas, C., & Alfonso, D. (2015). Optimization of a hybrid renewable system for high feasibility application in non-connected zones. Applied Energy, 155, 308-314. doi:10.1016/j.apenergy.2015.05.097Kebede, A. A., Berecibar, M., Coosemans, T., Messagie, M., Jemal, T., Behabtu, H. A., & Van Mierlo, J. (2020). A Techno-Economic Optimization and Performance Assessment of a 10 kWP Photovoltaic Grid-Connected System. Sustainability, 12(18), 7648. doi:10.3390/su12187648Hafez, O., & Bhattacharya, K. (2012). Optimal planning and design of a renewable energy based supply system for microgrids. Renewable Energy, 45, 7-15. doi:10.1016/j.renene.2012.01.087European Pellet Report. European Pellet Quality Certification (PELLCERT) project. PellCert. Published on April 2012https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/pellcert_european_pellet_report.pdf/Alfonso, D., Perpiñá, C., Pérez-Navarro, A., Peñalvo, E., Vargas, C., & Cárdenas, R. (2009). Methodology for optimization of distributed biomass resources evaluation, management and final energy use. Biomass and Bioenergy, 33(8), 1070-1079. doi:10.1016/j.biombioe.2009.04.002Perpiñá, C., Alfonso, D., Pérez-Navarro, A., Peñalvo, E., Vargas, C., & Cárdenas, R. (2009). Methodology based on Geographic Information Systems for biomass logistics and transport optimisation. Renewable Energy, 34(3), 555-565. doi:10.1016/j.renene.2008.05.047Technology Roadmap: Delivering Sustainable Bioenergyhttps://www.ieabioenergy.com/publications/technology-roadmap-delivering-sustainable-bioenergy/HOMER Pro 3.14 User Manualhttps://www.homerenergy.com/products/pro/docs/latest/index.htmlLao, C., & Chungpaibulpatana, S. (2017). Techno-economic analysis of hybrid system for rural electrification in Cambodia. Energy Procedia, 138, 524-529. doi:10.1016/j.egypro.2017.10.23

    Optimization of All-Renewable Generation Mix According to Different Demand Response Scenarios to Cover All the Electricity Demand Forecast by 2040: The Case of the Grand Canary Island

    Full text link
    [EN] The decarbonization of the electric generation system is fundamental to reaching the desired scenario of zero greenhouse gas emissions. For this purpose, this study describes the combined utilization of renewable sources (PV and wind), which are mature and cost-effective renewable technologies. Storage technologies are also considered (pumping storage and mega-batteries) to manage the variability in the generation inherent to renewable sources. This work also analyzes the combined use of renewable energies with storage systems for a total electrification scenario of Grand Canary Island (Spain). After analyzing the natural site¿s resource constraints and focusing on having a techno-economically feasible, zero-emission, and low-waste renewable generation mix, six scenarios for 2040 are considered combining demand response and business as usual. The most optimal solution is the scenario with the maximum demand response, consisting of 3700 MW of PV, around 700 MW of off-shore wind system, 607 MW of pump storage, and 2300 MW of EV batteries capacity. The initial investment would be EUR 8065 million, and the LCOE close to EUR 0.11/kWh, making the total NPC EUR 13,655 million. The payback is 12.4 years, and the internal rate of return is 6.39%This study has been in part supported by the projects: "Design Of a Hybrid Renewable Microgrid System" and "Microred Inteligente Hibrida de Energias Renovables para Solucionar el Trilema Agua-Alimentacion-Energia en Una Comunidad Rural de Honduras"Vargas-Salgado, C.; Berna, C.; Escrivá, A.; Díaz-Bello, D. (2022). Optimization of All-Renewable Generation Mix According to Different Demand Response Scenarios to Cover All the Electricity Demand Forecast by 2040: The Case of the Grand Canary Island. Sustainability. 14(3):1-30. https://doi.org/10.3390/su1403173813014

    Evaluation in High Education Based On a Multi-Criteria Methodology: Application to a Course on Power Systems

    Full text link
    [EN] After the adoption of the Bologna Plan by European Universities, the classical method used to evaluate students by traditional exams has changed, so that a wide typology of evaluation mechanisms haveappeared. By means of those mechanisms, students may be evaluated according to the specific and transversal competences they have acquired during their degree. In this contribution, the authors present a methodology, based on a multi-criteria procedure, which could be used to evaluate University students from different perspectives so as to obtain an objective assessment about the level of achievement of such competences. The proposed methodology has been applied during the last four years to the course onPower Systems that is taught in the Master Degree in Industrial Engineering at the Polytechnic University of Valencia, Spain, whose results are also presented here.Alcázar-Ortega, M.; Montuori, L.; Vargas-Salgado, C.; Rodríguez-García, J. (2022). Evaluation in High Education Based On a Multi-Criteria Methodology: Application to a Course on Power Systems. Specialusis Ugdymas. 43(2):3486-3496. http://hdl.handle.net/10251/1912103486349643

    Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor

    Full text link
    [EN] The methods currently used for designing a fluidized bed reactor in gasification plants do not meet an integrated methodology that optimizes all the different parameters for its sizing and operational regime. In the case of small-scale (several tens of kWs biomass gasifiers), this design is especially complex, and, for this reason, they have usually been built in a very heuristic trial and error way. In this paper, an integrated methodology tailoring all the different parameters for the design and sizing of a small-scale fluidized bed gasification plants is presented. Using this methodology, a 40 kWth biomass gasification reactor was designed, including the air distribution system. Based on this design, with several simplified assumptions, a reactor was built and commissioned. Results from the experimental tests using this gasifier are also presented in this paper. As a result, it can be said the prototype works properly, and it produces syngas able to produce thermal energy or even electricity.This work was supported in part by the European Commission through GROW GREEN project (Agreement number: 730283-GROW GREEN-H2020-SCC-2016-2017/H2020-SCC-NBS2stage-2016. http://growgreenproject.eu/).Vargas-Salgado, C.; Hurtado-Perez, E.; Alfonso-Solar, D.; Malmquist, A. (2021). Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor. Sustainability. 13(3):1-23. https://doi.org/10.3390/su13031061S123133Anukam, A. I., Goso, B. P., Okoh, O. O., & Mamphweli, S. N. (2017). Studies on Characterization of Corn Cob for Application in a Gasification Process for Energy Production. Journal of Chemistry, 2017, 1-9. doi:10.1155/2017/6478389Yang, S., Wang, H., Wei, Y., Hu, J., & Chew, J. W. (2019). Numerical Investigation of Bubble Dynamics during Biomass Gasification in a Bubbling Fluidized Bed. ACS Sustainable Chemistry & Engineering. doi:10.1021/acssuschemeng.9b01628Sharma, A., Wang, S., Pareek, V., Yang, H., & Zhang, D. (2014). CFD modeling of mixing/segregation behavior of biomass and biochar particles in a bubbling fluidized bed. Chemical Engineering Science, 106, 264-274. doi:10.1016/j.ces.2013.11.019Nilsson, S., Gómez-Barea, A., Fuentes-Cano, D., & Campoy, M. (2014). Gasification kinetics of char from olive tree pruning in fluidized bed. Fuel, 125, 192-199. doi:10.1016/j.fuel.2014.02.006Fotovat, F., Abbasi, A., Spiteri, R. J., de Lasa, H., & Chaouki, J. (2015). A CPFD model for a bubbly biomass–sand fluidized bed. Powder Technology, 275, 39-50. doi:10.1016/j.powtec.2015.01.005Sant’Anna, M. C. S., Cruz, W. R. dos S., Silva, G. F. da, Medronho, R. de A., & Lucena, S. (2017). Analyzing the fluidization of a gas-sand-biomass mixture using CFD techniques. Powder Technology, 316, 367-372. doi:10.1016/j.powtec.2016.12.023Yang, S., Fan, F., Wei, Y., Hu, J., Wang, H., & Wu, S. (2020). Three-dimensional MP-PIC simulation of the steam gasification of biomass in a spouted bed gasifier. Energy Conversion and Management, 210, 112689. doi:10.1016/j.enconman.2020.112689Qi, T., Lei, T., Yan, B., Chen, G., Li, Z., Fatehi, H., … Bai, X.-S. (2019). Biomass steam gasification in bubbling fluidized bed for higher-H2 syngas: CFD simulation with coarse grain model. International Journal of Hydrogen Energy, 44(13), 6448-6460. doi:10.1016/j.ijhydene.2019.01.146Lim, Y., & Lee, U.-D. (2014). Quasi-equilibrium thermodynamic model with empirical equations for air–steam biomass gasification in fluidized-beds. Fuel Processing Technology, 128, 199-210. doi:10.1016/j.fuproc.2014.07.017Xie, J., Zhong, W., Jin, B., Shao, Y., & Liu, H. (2012). Simulation on gasification of forestry residues in fluidized beds by Eulerian–Lagrangian approach. Bioresource Technology, 121, 36-46. doi:10.1016/j.biortech.2012.06.080Agu, C. E., Pfeifer, C., Eikeland, M., Tokheim, L.-A., & Moldestad, B. M. E. (2019). Detailed One-Dimensional Model for Steam-Biomass Gasification in a Bubbling Fluidized Bed. Energy & Fuels, 33(8), 7385-7397. doi:10.1021/acs.energyfuels.9b01340Kang, P., Hu, X. E., Lu, Y., Wang, K., Zhang, R., Han, L., … Zhou, Y. J. (2020). Modeling and Optimization for Gas Distribution Patterns on Biomass Gasification Performance of a Bubbling Spout Fluidized Bed. Energy & Fuels, 34(2), 1750-1763. doi:10.1021/acs.energyfuels.9b02512Soria-Verdugo, A., Von Berg, L., Serrano, D., Hochenauer, C., Scharler, R., & Anca-Couce, A. (2019). Effect of bed material density on the performance of steam gasification of biomass in bubbling fluidized beds. Fuel, 257, 116118. doi:10.1016/j.fuel.2019.116118Mac an Bhaird, S. T., Hemmingway, P., Walsh, E., Maglinao, A. L., Capareda, S. C., & McDonnell, K. P. (2015). Bubbling fluidised bed gasification of wheat straw–gasifier performance using mullite as bed material. Chemical Engineering Research and Design, 97, 36-44. doi:10.1016/j.cherd.2015.03.010Zaccariello, L., & Mastellone, M. (2015). Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal. Energies, 8(8), 8052-8068. doi:10.3390/en8088052Mac an Bhaird, S. T., Walsh, E., Hemmingway, P., Maglinao, A. L., Capareda, S. C., & McDonnell, K. P. (2014). Analysis of bed agglomeration during gasification of wheat straw in a bubbling fluidised bed gasifier using mullite as bed material. Powder Technology, 254, 448-459. doi:10.1016/j.powtec.2014.01.049Kuo, J.-H., Wey, M.-Y., Lian, Y.-H., & Samaksaman, U. (2014). Gaseous organic emissions during air gasification of woody waste: effect of bed agglomeration/defluidization. Fuel Processing Technology, 128, 104-110. doi:10.1016/j.fuproc.2014.07.008Serrano, D., Sánchez-Delgado, S., Sobrino, C., & Marugán-Cruz, C. (2015). Defluidization and agglomeration of a fluidized bed reactor during Cynara cardunculus L. gasification using sepiolite as a bed material. Fuel Processing Technology, 131, 338-347. doi:10.1016/j.fuproc.2014.11.036Kittivech, T., & Fukuda, S. (2019). Investigating Agglomeration Tendency of Co-Gasification between High Alkali Biomass and Woody Biomass in a Bubbling Fluidized Bed System. Energies, 13(1), 56. doi:10.3390/en13010056Fanelli, E. (2020). CFD Hydrodynamics Investigations for Optimum Biomass Gasifier Design. Processes, 8(10), 1323. doi:10.3390/pr8101323Karatas, H., & Akgun, F. (2018). Experimental results of gasification of walnut shell and pistachio shell in a bubbling fluidized bed gasifier under air and steam atmospheres. Fuel, 214, 285-292. doi:10.1016/j.fuel.2017.10.061Meng, F., Ma, Q., Wang, H., Liu, Y., & Wang, D. (2019). Effect of gasifying agents on sawdust gasification in a novel pilot scale bubbling fluidized bed system. Fuel, 249, 112-118. doi:10.1016/j.fuel.2019.03.107Vijay Kumar, K., Bharath, M., Raghavan, V., Prasad, B. V. S. S. S., Chakravarthy, S. R., & Sundararajan, T. (2017). Gasification of high-ash Indian coal in bubbling fluidized bed using air and steam – An experimental study. Applied Thermal Engineering, 116, 372-381. doi:10.1016/j.applthermaleng.2017.01.102Aydar, E., Gul, S., Unlu, N., Akgun, F., & Livatyali, H. (2014). Effect of the type of gasifying agent on gas composition in a bubbling fluidized bed reactor. Journal of the Energy Institute, 87(1), 35-42. doi:10.1016/j.joei.2014.02.004Ren, J., Cao, J.-P., Zhao, X.-Y., Yang, F.-L., & Wei, X.-Y. (2019). Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renewable and Sustainable Energy Reviews, 116, 109426. doi:10.1016/j.rser.2019.109426Koppatz, S., Pfeifer, C., & Hofbauer, H. (2011). Comparison of the performance behaviour of silica sand and olivine in a dual fluidised bed reactor system for steam gasification of biomass at pilot plant scale. Chemical Engineering Journal, 175, 468-483. doi:10.1016/j.cej.2011.09.071Yang, S., Zhou, T., Wei, Y., Hu, J., & Wang, H. (2019). Influence of size-induced segregation on the biomass gasification in bubbling fluidized bed with continuous lognormal particle size distribution. Energy Conversion and Management, 198, 111848. doi:10.1016/j.enconman.2019.111848Rasmussen, N. B. K., & Aryal, N. (2020). Syngas production using straw pellet gasification in fluidized bed allothermal reactor under different temperature conditions. Fuel, 263, 116706. doi:10.1016/j.fuel.2019.116706Xue, G., Kwapinska, M., Horvat, A., Kwapinski, W., Rabou, L. P. L. M., Dooley, S., … Leahy, J. J. (2014). Gasification of torrefied Miscanthus×giganteus in an air-blown bubbling fluidized bed gasifier. Bioresource Technology, 159, 397-403. doi:10.1016/j.biortech.2014.02.094Sarker, S., Bimbela, F., Sánchez, J. L., & Nielsen, H. K. (2015). Characterization and pilot scale fluidized bed gasification of herbaceous biomass: A case study on alfalfa pellets. Energy Conversion and Management, 91, 451-458. doi:10.1016/j.enconman.2014.12.034Zhou, T., Yang, S., Wei, Y., Hu, J., & Wang, H. (2020). Impact of wide particle size distribution on the gasification performance of biomass in a bubbling fluidized bed gasifier. Renewable Energy, 148, 534-547. doi:10.1016/j.renene.2019.10.059González-Vázquez, M., García, R., Pevida, C., & Rubiera, F. (2017). Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass. Energies, 10(3), 306. doi:10.3390/en10030306Prins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2006). More efficient biomass gasification via torrefaction. Energy, 31(15), 3458-3470. doi:10.1016/j.energy.2006.03.008Muvhiiwa, R., Kuvarega, A., Llana, E. M., & Muleja, A. (2019). Study of biochar from pyrolysis and gasification of wood pellets in a nitrogen plasma reactor for design of biomass processes. Journal of Environmental Chemical Engineering, 7(5), 103391. doi:10.1016/j.jece.2019.103391Pio, D. T., Tarelho, L. A. C., Tavares, A. M. A., Matos, M. A. A., & Silva, V. (2020). Co-gasification of refused derived fuel and biomass in a pilot-scale bubbling fluidized bed reactor. Energy Conversion and Management, 206, 112476. doi:10.1016/j.enconman.2020.112476Aznar, M. P., Caballero, M. A., Sancho, J. A., & Francés, E. (2006). Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Processing Technology, 87(5), 409-420. doi:10.1016/j.fuproc.2005.09.006Cerone, N., Zimbardi, F., Contuzzi, L., Baleta, J., Cerinski, D., & Skvorčinskienė, R. (2020). Experimental investigation of syngas composition variation along updraft fixed bed gasifier. Energy Conversion and Management, 221, 113116. doi:10.1016/j.enconman.2020.113116Khezri, R., Wan Ab Karim Ghani, W. A., Awang Biak, D. R., Yunus, R., & Silas, K. (2019). Experimental Evaluation of Napier Grass Gasification in an Autothermal Bubbling Fluidized Bed Reactor. Energies, 12(8), 1517. doi:10.3390/en12081517Ge, H., Zhang, H., Guo, W., Song, T., & Shen, L. (2019). System simulation and experimental verification: Biomass-based integrated gasification combined cycle (BIGCC) coupling with chemical looping gasification (CLG) for power generation. Fuel, 241, 118-128. doi:10.1016/j.fuel.2018.11.091Kim, Y. D., Yang, C. W., Kim, B. J., Kim, K. S., Lee, J. W., Moon, J. H., … Lee, U. D. (2013). Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier. Applied Energy, 112, 414-420. doi:10.1016/j.apenergy.2013.03.072Puig-Arnavat, M., Tora, E. A., Bruno, J. C., & Coronas, A. (2013). State of the art on reactor designs for solar gasification of carbonaceous feedstock. Solar Energy, 97, 67-84. doi:10.1016/j.solener.2013.08.001Baruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. Renewable and Sustainable Energy Reviews, 39, 806-815. doi:10.1016/j.rser.2014.07.129Susastriawan, A. A. P., Saptoadi, H., & Purnomo. (2017). Small-scale downdraft gasifiers for biomass gasification: A review. Renewable and Sustainable Energy Reviews, 76, 989-1003. doi:10.1016/j.rser.2017.03.112Marchelli, F., Curti, M., Tognin, M., Rovero, G., Moliner, C., Arato, E., & Bosio, B. (2020). Experimental Study on the Solids Residence Time Distribution in Multiple Square-Based Spouted Beds. Energies, 13(18), 4694. doi:10.3390/en13184694Guran, S. (2020). Thermochemical Conversion of Biomass. Practices and Perspectives in Sustainable Bioenergy, 159-194. doi:10.1007/978-81-322-3965-9_8Hernández, J. J., Lapuerta, M., & Barba, J. (2016). Separate effect of H 2 , CH 4 and CO on diesel engine performance and emissions under partial diesel fuel replacement. Fuel, 165, 173-184. doi:10.1016/j.fuel.2015.10.054Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.030Montuori, L., Vargas-Salgado, C., & Alcázar-Ortega, M. (2015). Impact of the throat sizing on the operating parameters in an experimental fixed bed gasifier: Analysis, evaluation and testing. Renewable Energy, 83, 615-625. doi:10.1016/j.renene.2015.04.068Alfonso-Solar, D., Vargas-Salgado, C., Sánchez-Díaz, C., & Hurtado-Pérez, E. (2020). Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings. Sustainability, 12(21), 9300. doi:10.3390/su12219300Narváez, I., Orío, A., Aznar, M. P., & Corella, J. (1996). Biomass Gasification with Air in an Atmospheric Bubbling Fluidized Bed. Effect of Six Operational Variables on the Quality of the Produced Raw Gas. Industrial & Engineering Chemistry Research, 35(7), 2110-2120. doi:10.1021/ie9507540Siedlecki, M., De Jong, W., & Verkooijen, A. H. M. (2011). Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review. Energies, 4(3), 389-434. doi:10.3390/en4030389Geldart, D. (1973). Types of gas fluidization. Powder Technology, 7(5), 285-292. doi:10.1016/0032-5910(73)80037-3Kumar, A., Jones, D., & Hanna, M. (2009). Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies, 2(3), 556-581. doi:10.3390/en20300556“IMERYS” https://imerys-refractoryminerals.com/europe-cis-mena/products/molochite/Wen, C. Y., & Yu, Y. H. (1966). A generalized method for predicting the minimum fluidization velocity. AIChE Journal, 12(3), 610-612. doi:10.1002/aic.690120343Chirone, R., Poletto, M., Barletta, D., & Lettieri, P. (2020). The effect of temperature on the minimum fluidization conditions of industrial cohesive particles. Powder Technology, 362, 307-322. doi:10.1016/j.powtec.2019.11.102Lim, M. T., & Alimuddin, Z. (2008). Bubbling fluidized bed biomass gasification—Performance, process findings and energy analysis. Renewable Energy, 33(10), 2339-2343. doi:10.1016/j.renene.2008.01.014Gómez-Barea, A., Ollero, P., & Leckner, B. (2013). Optimization of char and tar conversion in fluidized bed biomass gasifiers. Fuel, 103, 42-52. doi:10.1016/j.fuel.2011.04.042Gómez-Barea, A., & Leckner, B. (2010). Modeling of biomass gasification in fluidized bed. Progress in Energy and Combustion Science, 36(4), 444-509. doi:10.1016/j.pecs.2009.12.002Shi, L., & Northwood, D. O. (1995). The mechanical behavior of an aisi type 310 stainless steel. Acta Metallurgica et Materialia, 43(2), 453-460. doi:10.1016/0956-7151(94)00279-qLao, C., & Chungpaibulpatana, S. (2017). Techno-economic analysis of hybrid system for rural electrification in Cambodia. Energy Procedia, 138, 524-529. doi:10.1016/j.egypro.2017.10.23

    Multi-Criteria Evaluation Method in the Field of University Education: Application to a Course on Energy Markets

    Full text link
    [EN] The Bologna Plan adopted by European universities ended the hegemony of an evaluation system exclusively based on the performance of traditional examinations. In this area, with a view to revitalizing grading models in university education, a wide range of evaluation mechanisms has been developed in recent years. Using them, teachers may evaluate the learning levels of their students, including both the specific competences of the taught subject and the transversal competences that help students further develop their professional careers. This article presents a methodology based on a multi-criteria procedure through which students could be evaluated from different points of view, based on different types of evaluation mechanisms that are diversely weighted. Therefore, their levels of learning could be assessed more objectively. This article shows a practical case of applying this methodology, which has been used for the last five years in a course on energy markets taught as part of the Degree in Energy Engineering at the UPV.Alcázar-Ortega, M.; Montuori, L.; Rodríguez-García, J.; Vargas-Salgado, C. (2023). Multi-Criteria Evaluation Method in the Field of University Education: Application to a Course on Energy Markets. Knowledge. 3(1):40-52. https://doi.org/10.3390/knowledge301000340523

    Methodology for the implementation of e-learning class during the COVID-19

    Full text link
    [EN] The serious situation caused by the coronavirus has forced Authorities to take drastic decisions that have affected the normal functioning of the entire society. One of the most impactful measures taken has been the self-discipline of the social distancing as the entire society has been obliged to stay at home. At the education level, restrictions ordered by the Authorities have limited the access to all professors and students at the academic centers. In Spain, the state of alarm decreed by the Government has affected the entire Academic course and therefore, in order to be able to preserve the public service, the Polytechnic University of Valencia, in just a week, has been asked to revise the entire programs and settle on-line courses for more than 35.000 students in multiples disciplines. Within this framework, a methodology has been developed for the implementation of on-line learning courses in a period of crisis within a short time. On-line learning has been demonstrated to be effective as face-to-face education, becoming one of the most popular higher education alternatives. However, students engaged in on-line classes result to be less engaged in collaborative learning, student-faculty interactions, and discussions with their classmates if compared to the traditional system. In this context, the barriers of on-line teaching classes have been investigated and tools to overcome them have been proposed. Finally, a real application to the Polytechnic University of Valencia is presented.This work was supported in part by the regional public administration of Valencia under the grant ACIF/2018/106.Montuori, L.; Alcázar-Ortega, M.; Vargas Salgado, CA.; Bastida Molina, P. (2021). Methodology for the implementation of e-learning class during the COVID-19. En Proceedings INNODOCT/20. International Conference on Innovation, Documentation and Education. Editorial Universitat Politècnica de València. 155-163. https://doi.org/10.4995/INN2020.2020.11877OCS15516

    Application of Artificial intelligence to high education: empowerment of flipped classroom with just-in-time teaching

    Full text link
    [EN] In the so-called society 4.0, Artificial Intelligence (AI) is being widely used in many areas of life. Machine learning uses mathematical algorithms based on "training data", which are able to make predictions or take decisions with the ability to change their behavior through a self-training approach. Furthermore, thanks to AI, a large volume of data can be now processed with the overall goal to extract patterns and transform the information into a comprehensible structure for further utilization, which manually done by humans would easily take several years. In this framework, this article explores the potential of AI and machine learning to empower flipped classroom with just-in-time teaching (JiTT). JiTT is a pedagogical method that can be easily combined with the reverse teaching. It allows professors to receive feedback from students before class, so they may be able to adapt the lesson flow, as well as preparing strategies and activities focused on the student deficiencies. This research explores the application of AI in high education as a tool to analyze the key variables involved in the learning process of students and to integrate JiTT within the flipped classroom. Finally, a case of application of this methodology is presented, applied to the course of Energy Markets taught at the Polytechnic University of Valencia.This work was supported in part by the regional public administration of Valencia under the grant ACIF/2018/106.Montuori, L.; Alcázar Ortega, M.; Bastida Molina, P.; Vargas Salgado, CA. (2021). Application of Artificial intelligence to high education: empowerment of flipped classroom with just-in-time teaching. En Proceedings INNODOCT/20. International Conference on Innovation, Documentation and Education. Editorial Universitat Politècnica de València. 223-231. https://doi.org/10.4995/INN2020.2020.11896OCS22323
    corecore